The ChatGPT Effect on AI-themed cryptocurrencies

Lennart Ante^{1,*}, Ender Demir²

¹ Blockchain Research Lab, Weidestraße 120b, 22083 Hamburg, Germany
² Department of Business Administration School of Social Sciences Reykjavik University, Reykjavik, Iceland
* Correspondence: ante@blockchainresearchlab.org

Abstract: ChatGPT is an artificial intelligence (AI) chatbot that provides users with detailed responses and accurate answers to any questions. It has garnered significant attention after its launch in November 2022. We analyze the returns of AI-themed crypto assets around the launch and widespread attention towards ChatGPT. We reveal significant abnormal returns for AI tokens after the launch of ChatGPT, up to 41% over the course of two weeks. Moreover, 90% of tokens exhibit positive abnormal returns. This suggests that the attention towards ChatGPT and AI in general has transitioned to cryptocurrency markets, resulting in positive price effects for AI-related cryptocurrencies.

Keywords: market efficiency; price discovery; artificial intelligence; ChatGPT

1 Introduction

On November 30, 2022, OpenAI, a US-based organization, unveiled ChatGPT, an artificial intelligence (AI) chatbot model that utilizes reinforcement learning to engage in verbal communication with its users. This approach allows the model to respond to queries and follow-up inquiries. The launch of ChatGPT generated significant interest, resulting in the model accumulating over one million users actively sharing and discussing questions and answers on social media platforms within a week of its release (Shankland, 2022; Vanian, 2022).

ChatGPT was described in media articles as a future competitor for Google (Tyrrell, 2022) and could potentially serve as a catalyst for digital transformation (Brown, 2022). While OpenAI CEO San Altman cautioned that ChatGPT should not be relied upon for important matters, as it is currently in a limited preview stage and should not be considered a fully developed product (Altman, 2022). Despite these limitations, ChatGPT can be viewed as a promising indication of the ongoing advancements in AI and its potential for future developments. Figure 1 illustrates the global Google Trends search results for ChatGPT. It represents a relative scale indicating search volume, where 0 represents the absence of search volume and 100 represents the highest measured search volume.

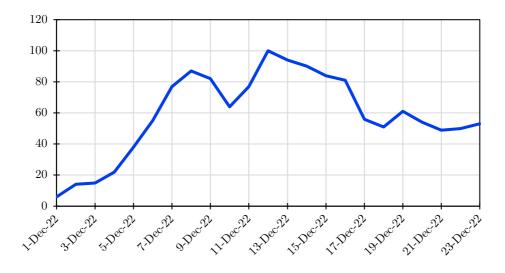


Figure 1. "Chatgpt" search results in Google Trends

The emergence and widespread adoption of ChatGPT, along with its potential for innovation and economic and social impact, suggests the presence of significant opportunities within the artificial intelligence industry. This is evident through the dissemination of information about ChatGPT through various social and media channels by a diverse user base. This narrative suggests that projects in the field of AI are perceived to possess a higher level of potential or quality, which, according to theories on market efficiency (e.g., Fama, 1970; Lo, 2004), should be reflected in the prices of tradable assets such as stocks or cryptocurrency. In fact, Wu and Chen (2022) show that ETFs with the name "AI" generate a name premium of approximately 0.4%. Signaling theory, as proposed by Spence (1973), posits that individuals use quality signals to mitigate information asymmetry. These signals are typically costly and difficult to replicate, publicly accessible, and verifiable (Ante and Fiedler, 2020). In the context of ChatGPT, the posting of chat histories and replies from multiple individuals within one's social network, in combination with media attention surrounding the potential of artificial intelligence, can serve as a valid quality signal that increases the perceived value of assets related to AI. This is due to the tendency for individuals to rely on past experiences with other individuals when making future decisions (Andersen and Baum, 1994) and the importance of obtaining high-quality signals from trustworthy sources within one's network.

This work aims to examine to what extent there is a "ChatGPT effect" on cryptocurrencies with a focus on AI. We assume that the launch and the subsequent attention to ChatGPT represents a positive quality signal (or narrative) for AI-themed assets, resulting in positive abnormal price effects after or with the launch. For this purpose, we implement an event study methodology to test semi-strong market efficiency using a sample of AI-themed crypto assets, for which we calculate an equally-weighted AI crypto index.

The present study adds to the body of literature on the market efficiency of cryptocurrency assets, focusing specifically on how a publicly-perceived "narrative" can influence updated expectations of a particular set of assets and how these expectations are reflected in market reactions. Additionally, the findings of this study contribute to the field of signaling theory by examining the potential for the perceived success and potential of a technology (in this case, AI)

to serve as a quality signal for actors in different markets, potentially leading to herding behavior and contagion effects.

In the following, the data and methodology utilized in the study will be outlined in Section 2. The obtained results will then be presented and discussed in Section 3. Finally, the conclusion of the study will be presented in the final section.

2 Data and methods

We rely on the leading market data portal CoinGecko (coingecko.com) as the data source. CoinGecko categorizes crypto asset types and has the category "artificial intelligence", which by December 2022, comprises 15 AI-focused crypto assets. The aforementioned crypto projects pertain to AI, though they exhibit a considerable degree of variance from one another. For example, the three projects with the largest market capitalization comprise an AI-run crowdsourced hedge fund (Numeraire), a project offering autonomous agent technology for blockchains (Fetch AI) and a platform for AI algorithm monetization (SingularityNET). We exclude five of the assets from our analysis due to a lack of liquidity (i.e., 24-hour trading volumes below \$20,000), resulting in a sample of 10 AI-themed crypto assets, for which we collect daily price data from July 1 until December 14, 2022. We calculate log returns for each asset and calculate an equally weighted AI crypto index based on the 10 AI tokens as:

AI Token Index
$$Return_t = \frac{1}{N} \sum_{i}^{N} Token \log return_{i,t}$$
 (1)

Additionally, we collect data on Bitcoin as a reference market for the event study model. Table 1 shows summary statistics on the 10 AI tokens, the AI crypto index and Bitcoin.

Table 1. AI-themed Crypto Asset Returns

The table shows summary statistics for daily logarithmic returns for July 2022 to December 2022. Returns are expressed in percentage points. The AI Crypto Index is an equally weighted portfolio of all AI-themed crypto asset returns.

Ticker	Name	Mean	SD	Median	Min	Max	
Panel A	: AI-themed tokens						
ALI	Artificial Liquid Intelligence	-0.37	8.44	-0.80	-26.31	50.23	
DBC	DeepBrain Chain	0.31	6.01	-0.32	-15.63	35.34	
MOOV	dotmoovs	-0.67	4.76	-0.76	-26.85	17.53	
EFX	Effect Network	0.04	5.08	0.02	-18.37	22.88	
FET	Fetch.ai	0.12	5.99	-0.10	-25.90	30.56	
MAN	Matrix AI Network	0.62	7.91	0.15	-24.38	47.84	
NMR	Numeraire	-0.24	6.44	-0.42	-26.19	39.56	
ORAI	Oraichain	-0.06	5.69	-0.70	-16.99	42.26	
AGIX	SingularityNET	0.21	7.46	-0.08	-24.02	42.36	
VXV	Vectorspace AI	-0.26	5.33	-0.34	-20.36	23.37	
Panel B: AI Crypto Index							
AICI	AI Crypto Index	-0.03	3.75	-0.15	-19.56	22.21	
Panel C	: Bitcoin						
BTC	Bitcoin	0.05	3.06	0.16	-10.20	15.49	

We use event study methodology to analyze to what extent the launch of ChatGPT on November 30, 2022 has (had) an impact on AI tokens. This methodology, as described by Boehmer et al. (1991), involves comparing historical returns with observed returns in order to determine the extent to which an unexpected event or information results in an abnormal market reaction. The event study approach has gained increasing attention within the realm of cryptocurrency literature, with previous studies examining the effects of events such as positive and negative news (Yue et al., 2021), the launch of central bank digital currencies (Mzoughi et al., 2022) or stablecoins (Ante et al., 2021), fan tokens (Demir et al., 2022) and specific large Bitcoin transfers (Ante and Fiedler, 2021) on the cryptocurrency market. To ensure that any observed abnormal effects are not simply a result of general crypto market volatility, Bitcoin is utilized as a reference market within the market model. This allows for the adjustment of any abnormal effects for possible external influences through changes in the price of Bitcoin (serving as a proxy for the crypto market). This methodology thus allows for the determination of whether the observed abnormal effects are truly caused by the ChatGPT event.

In the market model, the return $R_{i,t}$ of an event *i* in the period *t* is calculated as

$$R_{i,t} = \alpha_i + \beta_i R_{m,t} + \varepsilon_{i,t} , \qquad (2)$$

with α_i indicating the observed return, $R_{m,t}$ being the log return of the reference market Bitcoin, β_i representing the regression coefficient measuring the sensitivity of AI token returns on the reference market, and $\varepsilon_{i,t}$ being the error term. Expected returns are calculated by a time series regression over the estimation period of t = -115 to -15 (i.e., 100 days). Accordingly, the abnormal return (AR) for a given time period can be calculated by comparing the observed return of a specific event within an event window to the expected return and the market return. This can be expressed mathematically as follows:

$$AR_{i,t} = R_{i,t} - (\alpha_i + \beta_i R_{m,t}) \tag{3}$$

The cumulative abnormal return over a specific time period t_1 to t_2 is then calculated as

$$CAR(t_1, t_2) = \sum_{t=t_1}^{t_2} AR_{i,t}.$$
 (4)

To assess the significance of CARs, we rely on a parametric t-test and the nonparametric Wilcoxon sign rank test (Wilcoxon, 1945).

3 Results and discussion

Table 2 illustrates the correlation between AI-themed tokens, the AI Index, and Bitcoin. It is notable that there are relatively high and positive correlations between AI-themed tokens, reaching up to 0.55. However, it is interesting to note that these tokens appear to be independent from Bitcoin, as the correlations are approximately zero. Despite the commonly observed strong correlation between cryptocurrencies and Bitcoin (Smales, 2020), the discovery of unique dynamics exhibited by AI tokens during the analyzed time frame is surprising. It can be inferred that AI tokens are not primarily impacted by the cryptocurrency market, but rather by external factors, one of which is being analyzed in this study.

Table 2. Correlations

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
(1) ALI											
(2) DBC	0.19										
(3) MOOV	0.24	0.11									
$(4) \mathrm{EFX}$	0.11	0.05	0.24								
(5) FET	0.38	0.36	0.35	0.33							
(6) MAN	0.19	0.17	0.06	0.12	0.40						
(7) NMR	0.26	0.20	0.33	0.34	0.51	0.31					
(8) ORAI	0.34	0.22	0.45	0.42	0.55	0.31	0.46				
(9) AGIX	0.29	0.13	0.33	0.21	0.42	0.31	0.37	0.40			
$(10) \ VXV$	0.18	0.08	0.29	0.18	0.35	0.24	0.31	0.27	0.25		
(11) AICI	0.56	0.40	0.44	0.42	0.72	0.54	0.65	0.64	0.63	0.47	
(12) BTC	0.04	-0.03	0.02	-0.02	-0.05	-0.07	0.07	0.00	-0.07	-0.08	-0.06

The table shows Spearman rank correlations for daily logarithmic returns between July 01 and December 13, 2022. Significant correlations at the 5% level are highlighted in bold.

In Figure 2, we present the cumulative log returns of AI themed tokens, the AI crypto index and Bitcoin. It is evident that the introduction of ChatGPT resulted in an increase in returns for the majority of AI-centric tokens and the AI cryptocurrency index, while Bitcoin experienced a decrease in value following the event. This serves as preliminary evidence of the positive impact of the launch of ChatGPT.

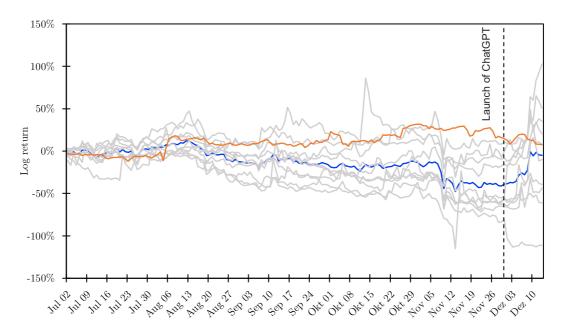


Figure 2. Cumulative log returns of AI themed tokens, the AI crypto index and Bitcoin before and after the launch of ChatGPT

Note: The blue line shows log returns of an equally weighted AI crypto index, the orange line visualizes Bitcoin and the ten individual AI tokens are shown in grey.

Table 3 presents the abnormal returns following the launch of ChatGPT for various event windows. On the launch day, the statistically significant average abnormal return was 2.71% with 90% of AI-themed tokens experiencing a positive return. There was a strong reaction to the platform's launch on days 8 and 9, with abnormal returns of 5.6% and 22.59%, respectively, likely due to increasing popularity and usage of the platform as well as a better understanding of future prospects. The potential explanation for this result can be gleaned from the Google Trends results depicted in Figure 1, which demonstrate a gradual increase in awareness of ChatGPT over the first nine days before reaching a temporary peak. In examining the CARs, there were significant positive returns of 18.26% and 41.68% in the one week and two week periods, respectively, with 90% of tokens exhibiting positive abnormal returns in both periods.

Table 3. Abnormal returns after the launch of ChatGPT

The table shows average abnormal returns (ARs) per day as well as cumulative abnormal returns (CARs) for intervals of one and two weeks for the ten AI-themed tokens around the launch of ChatGPT. The column *z*-test relates to the Wilcoxon sign rank test and the column *positives* indicates the share of AI tokens with positive abnormal returns in the particular event window.

Event window	(C)AR	SE	t-test	z-test	positives
t = 0	2.71%	0.67%	4.03***	2.70***	90%
t = 1	0.86%	4.54%	0.19	-0.87	30%
t = 2	1.89%	1.12%	1.69	1.58	70%
t = 3	-0.33%	1.79%	-0.19	-0.05	50%
t = 4	1.96%	1.03%	1.90*	1.38	80%
t = 5	7.69%	3.87%	1.99*	2.40**	90%
t = 6	3.47%	3.63%	0.96	0.66	50%
t = 7	-2.04%	3.21%	-0.63	-0.76	30%
t = 8	5.60%	1.41%	3.97***	2.80***	100%
t = 9	22.59%	4.99%	4.53***	2.80***	100%
t = 10	-4.73%	3.50%	-1.35	-1.27	30%
t = 11	4.53%	4.60%	0.98	1.27	70%
t = 12	-2.46%	2.33%	-1.06	-0.97	40%
t = 13	-0.07%	1.66%	-0.04	-0.26	40%
t = 0 to 6 (one week)	18.26%	7.68%	2.38**	2.19**	90%
t = 0 to 13 (two weeks)	41.68%	13.54%	3.08**	2.50**	90%

*, **, *** indicates significance at the 10%, 5% and 1% level.

Figures 4 and 5 present the CARs of an equally weighted AI crypto index and individual AI tokens, respectively, over a two-week period following the launch of ChatGPT. The index saw an increase of over 40% in CARs up to day 9. The individual tokens displayed a similar pattern, with one exception experiencing a decline in price during the same time frame. Overall, the launch and popularity of ChatGPT appeared to serve as a positive signal for AI-themed tokens.

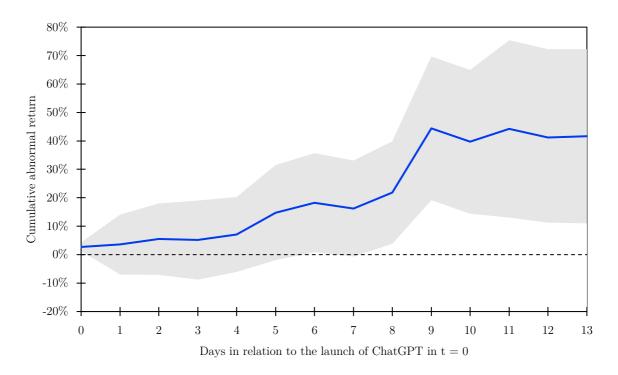


Figure 3. Cumulative abnormal returns of an equally weighted AI crypto index over the span of two weeks after the launch of ChatGPT

Note: The blue line shows mean cumulative abnormal returns and the grey bar indicates 95 percent confidence intervals.

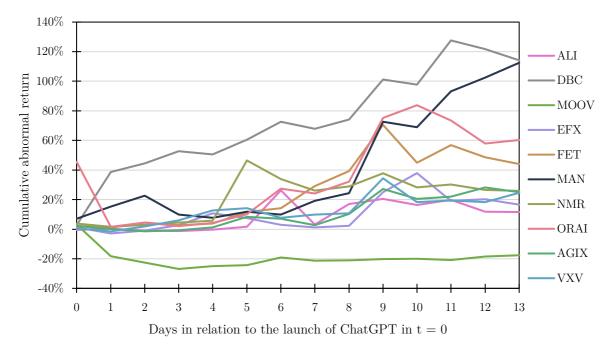


Figure 4. Cumulative abnormal returns of AI tokens over the span of two weeks after the launch of ChatGPT

The findings suggest that, in accordance with the notion of transference (Andersen and Baum, 1994), cryptocurrency investors rely on their (social) networks and media for (re-)assessing new information concerning AI and AI tokens, leading to abnormal price effects. As predicted by cognitive balance theory (Heider, 2013), investors attempt to achieve a balance between public sentiment and their personal beliefs, in this case regarding ChatGPT, AI, and AI tokens. A favorable view of ChatGPT and the potential of AI translates to a corresponding perception of AI tokens, resulting in the transfer of attitudes from the investor's network onto the investable asset (Ohanian, 1991). This demonstrates the influence that social networks and media hold over financial markets. In accordance with signaling theory (Spence, 1973), the positive sentiment towards ChatGPT and AI serve as quality signals to the market, which are immediately reflected in prices. This finding aligns with the signaling theory-related findings of Ante (2023) of how social media influencers and their activity represent relevant quality signals for the cryptocurrency market, or rather investors and the study of Feinstein and Werbach (2021), who identified that regulatory events can serve as quality signals affecting cryptocurrency markets and trading. The market will only react as long as the signal (i.e., the sentiment) holds value. If, hypothetically, the market loses confidence in ChatGPT and the sentiment shifts to negative, this shift should also be reflected in prices. If the quality of the signals becomes too low, for example, due to a limited number of people posting to ChatGPT, investors may no longer interpret this as a quality signal and instead disregard it. From this perspective, the "ChatGPT Effect," it simply an uncritical aspect of market efficiency.

4 Conclusion

This paper explores the impact of the launch of ChatGPT in November 2022 on the returns of AI-themed crypto assets and an equally weighted AI crypto index based on those tokens. By using an event study methodology and relying on signaling theory, we find that there are significantly positive abnormal returns on the day of the launch and also on days 8 and 9 after the launch, which likely relates to the fact that the worldwide attention for ChatGPT only reached its interim peak at this time. The CAR of the AI crypto index is up to 41% over the course of two weeks and 90% of tokens exhibiting positive abnormal returns. This suggests that the positive coverage of ChatGPT has carried over to nearby markets around AI and in this case AI-focused crypto assets. Accordingly, we identify a "ChatGPT effect", i.e., a positive signal of quality that the cryptocurrency market picked up.

An implication of our study is the finding that crypto asset markets are highly fragmented. While there was virtually no relevant attention for AI tokens before the launch of ChatGPT, they may represent an (at least temporarily) independent submarket, which is surprisingly even quasi uncorrelated to Bitcoin in the time frame considered in this study. This results in the practical implication that investors should closely follow the developments related to specific themed tokens as their dynamics can be different from the rest of the cryptocurrency market.

References

- Altman, S., 2022. Tweet by Sam Altman [WWW Document]. Twitter. URL https://twitter.com/sama/status/1601731295792414720 (accessed 12.14.22).
- Andersen, S.M., Baum, A., 1994. Transference in Interpersonal Relations: Inferences and Affect Based on
Significant-Other Representations. Journal of Personality, 62, 459–497.
https://doi.org/10.1111/j.1467-6494.1994.tb00306.x
- Ante, L., 2023. How Elon Musk's Twitter activity moves cryptocurrency markets. Technological Forecasting and Social Change, 186, 122112. https://doi.org/10.1016/j.techfore.2022.122112
- Ante, L., Fiedler, I., 2021. Market reaction to large transfers on the Bitcoin blockchain Do size and motive matter? Finance Research Letters, 101619. https://doi.org/10.1016/j.frl.2020.101619
- Ante, L., Fiedler, I., 2020. Cheap Signals in Security Token Offerings (STOs). Quantitative Finance and Economics 4, 608–639. https://doi.org/10.3934/QFE.2020028
- Ante, L., Fiedler, I., Strehle, E., 2021. The Influence of Stablecoin Issuances on Cryptocurrency Markets. Finance Research Letters, 41, 101867. https://doi.org/10.1016/j.frl.2020.101867
- Boehmer, E., Musumeci, J., Poulsen, A.B., 1991. Event-study methodology under conditions of eventinduced variance. Journal of Financial Econometrics 30, 253–272.
- Brown, A., 2022. Why ChatGPT will change digital transformation [WWW Document]. BCS. URL https://www.bcs.org/articles-opinion-and-research/why-chatgpt-will-change-digital-transformation/ (accessed 12.14.22).
- Demir, E., Ersan, O., Popesko, B., 2022. Are Fan Tokens Fan Tokens? Finance Research Letters, 102736. https://doi.org/10.1016/j.frl.2022.102736
- Fama, E.F., 1970. Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of Finance 25, 383–417. https://doi.org/10.2307/2325486
- Feinstein, B.D., Werbach, K., 2021. The Impact of Cryptocurrency Regulation on Trading Markets. Journal of Financial Regulation 7, 48–99. https://doi.org/10.1093/jfr/fjab003
- Heider, F., 2013. The psychology of interpersonal relations. Psychology Press.
- Lo, A.W., 2004. The Adaptive Markets Hypothesis. The Journal of Portfolio Management 30, 15–29. https://doi.org/10.3905/jpm.2004.442611
- Mzoughi, H., Benkraiem, R., Guesmi, K., 2022. The bitcoin market reaction to the launch of central bank digital currencies. Research in International Business and Finance, 63, 101800. https://doi.org/10.1016/j.ribaf.2022.101800
- Ohanian, R., 1991. The impact of celebrity spokespersons' perceived image on consumers' intention to purchase. Journal of Advertising Research, 31, 46–54.
- Shankland, S., 2022. Why Everyone's Obsessed with ChatGPT, the Mind-Blowing AI Chatbot [WWW Document]. CNET. URL https://www.cnet.com/tech/computing/why-everyones-obsessed-with-chatgpt-the-mind-blowing-ai-chatbot/ (accessed 12.14.22).
- Smales, L.A., 2020. One Cryptocurrency to Explain Them All? Understanding the Importance of Bitcoin in Cryptocurrency Returns. Economic Papers: A journal of applied economics and policy 39, 118– 132. https://doi.org/10.1111/1759-3441.12282
- Spence, M., 1973. Job Market Signaling. The Quarterly Journal of Economics, 87, 355–374. https://doi.org/10.1055/s-2004-820924
- Tyrrell, J., 2022. ChatGPT versus Google the future of search [WWW Document]. TechHQ.
- Vanian, J., 2022. Why tech insiders are so excited about ChatGPT, a chatbot that answers questions and writes essays [WWW Document]. CNBC. URL https://www.cnbc.com/2022/12/13/chatgpt-is-anew-ai-chatbot-that-can-answer-questions-and-write-essays.html (accessed 12.14.22).
- Wilcoxon, F., 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1, 80-83.

- Wu, C.-C., Chen, W.-P., 2022. What's an AI name worth? The impact of AI ETFs on their underlying stocks. Finance Research Letters, 46, 102474. https://doi.org/10.1016/j.frl.2021.102474
- Yue, W., Zhang, S., Zhang, Q., 2021. Asymmetric News Effects on Cryptocurrency Liquidity: an Event Study Perspective. Finance Research Letters, 41, 101799. https://doi.org/10.1016/j.frl.2020.101799